Микросхема TL431: схема включения и аналог микросхемы. Фонарик из хлама и зарядное на LM317 TL431 для Li-Ion АКБ Стабилитроны серии A

В этой статье мы узнаем, как работает интегральный стабилизатор напряжения TL431, в регулируемых блоках питания.

Технически TL431 называется программируемым шунтирующим регулятором, простыми словами это может быть определено как регулируемый стабилитрон. Давайте рассмотрим его спецификацию и указания по применению.

Стабилитрон TL431 имеет следующие основные функции:

  • Выходное напряжение устанавливается или программируется до 36 вольт
  • Низкое выходное сопротивление около 0,2 Ома
  • Пропускная способность до 100 мА
  • В отличие от обычных диодов Зенера, генерация шума в TL431 незначительна.
  • Быстрое переключение.

Общее описание TL431

TL431 — регулируемый или программируемый регулятор напряжения.
Необходимое выходное напряжение может быть установлено с помощью всего двух внешних (делитель напряжения), подключенных к выводу REF.

На приведенной ниже схеме показана внутренняя структурная схема устройства, а также PIN-код обозначения.

Распиновка TL431

Схема включения стабилитрона TL431

Теперь давайте посмотрим, как этот прибор может быть использован в практических схемах. Схема ниже показывает, как можно использовать TL431 в роли обычного регулятора напряжения:

Приведенный выше рисунок показывает, как с помощью всего пары резисторов и TL431 получить регулятор, работающий в диапазоне 2,5…36 вольт. R1 представляет собой переменный резистор, который используется для регулировки выходного напряжения.

Следующая формула справедлива для вычисления сопротивлений резисторов, в случае если мы хотим получить какое-то фиксированное напряжение.

Vo = (1 + R1/R2)Vref

При совместном применении стабилизаторов серии 78xx (7805,7808,7812..) и TL431 можно использовать следующую схему:

TL431 катод соединен с общим выводом 78xx. Выход 78xx подключен к одной из точки резисторного делителя напряжения, который определяет выходное напряжение.

Вышеуказанные схемы использования TL431 ограничены выходным током 100 мА максимум.

Для получения более высокого выходного тока может быть использована следующая схема.

В приведенной выше схеме большинство компонентов схожи с обычным регулятором, приведенным выше, за исключением того, что здесь катод подключен к плюсу через резистор и к их точке соединения подсоединена база буферного транзистора. Выходной ток регулятора будет зависеть от мощности данного транзистора.

Области применения TL431

Выше изложенные варианты применения TL431 могут быть использована в любом месте, где требуется точность настройки выходного напряжения или опорного напряжении. В настоящее время это широко используется в импульсных источниках питания для генерации точного опорного напряжения.

(скачено: 846)

Был у меня когда то отличный фонарик для подводного плаванья, но накрылась там лампочка и сдох АКБ свинцово-кислотный. Тот еще раритет, и не хотелось как то заморачиваться над поисками запчастей. Полазив по заветным коробочкам, нашлось 3 лампы 12В светодиодные китайские и аккумулятор от ноутбука ASUS. Недолго думая родился новый фонарь. Экономный и мощный. Долбит дай бог, а кушает всего 1,5А.

Вот собственно этот фонарик

Отражатель пришлось убрать, три лампы равномерно размещены по стеклу и закреплены обычным силиконом со стройки(жаль нет пистолета с термоклеем)

Работало все чудно, пока не сел аккумулятор. Можно было б зарядить обычной зарядкой, но не все тут так просто. Для LI-Ion нужна специальная зарядка, которая должна ограничивать ток заряда и напряжения окончания заряда.
Первое что пришло на ум, это LM317. Тут же задав Yandex пару вопросов, нашлась подходящая схема для зарядки Li-Ion аккумуляторов. Осталось только пересчитать некоторые компоненты.

Схема довольно проста в настройке и справится любой новичок.

Резистором R5 задается зарядный ток, на этом резисторе должно быть падение 1.25В при максимальном токе. Резистор рассчитывается по формуле R5=1.25в\Iзар, где Iзар – ток заряда. Мощность резистора рассчитывается по формуле P=1.25*1.25/R. Посчитаем R5 для зарядного тока 1.5А. R5=1.25/0.1=12,5Ом P=1.25*1.25/12.5=0.125Вт. Это значит, что для тока 0.1А нужен резистор 12,5Ом мощностью 0,25Вт. Кстати для LM317 1.5А предельный ток, но TL431 — 0.1A
Следующий этап настройки это подбор сопротивлений делителя управляющего оконечным напряжением зарядки. В моем случае резисторы должны быть такими, что бы при напряжении на аккумуляторе 12,6В(3 АКБ*4,2В), на делителе было 2,5В. Поможет нам посчитать формула R3=((Uвх*R4)/Uвых)-R4. Предположим, что R4 подстроечник 1кОм и он где то в середине 500Ом, тогда R1=((12,6В+0,6В)*500Ом)/2,5В-500Ом=2160Ом Ближайший 2,2кОм. 0,6В это падение на диоде VD2(нужен для защиты от разряда АКБ через цепи стабилизации), которое тоже надо учитывать. Резисторы нам даны и что бы точно выставить напряжение. Выкручиваем резистор R4 пока на выходе не поймаем наши 12,6В
На этом настройка заканчивается, мы можем пользоваться нашим зарядным. Только незабываем про радиатор 🙂

Питаться схема будет от выносного адаптера 15В 3А через диод VD1. VD1 нужен для защиты от перепутанного минуса и плюса. Так сказать на всякий случай
Печатная плата выполнена из обычного текстолита, дорожки перенесены с помощью ЛУТ. Кстати получилась довольно компактная всего 4*4СМ

Электронный компонент tl 431 - это одна из интегральных микросхем, чьё производство поставлено на массовый поток, начиная, с 1978 года. Она широко используется в большинстве компьютерных блоков питания, телевизоров и другой бытовой технике в качестве прецизионного программируемого источника опорного напряжения. На практике сложилось несколько схем включения tl431.

Устройство электронного элемента

Микросхема обладает простой конструкцией, состоящей из следующих элементов: корпуса, операционного усилителя (ОУ), выходного tl431 транзистора, а также источника опорного напряжения. Особенностью этой микросхемы является то, что она выполняет функции стабилитрона.

Источник опорного напряжения на 2.5 вольта, обладающий высокой стабильностью, подключается к инверсному входу ОУ (-), эмиттеру транзистора и землёй с помощью двух общих точек в цепь опорного напорного также включён кремниевый диод. Он предназначен для предотвращения создания обратного тока и защищает от переполюсовки. Прямой вход ® предназначен для приёма сигнала с других плат, а также питания усилителя. Он подключается через диод к коллектору транзистора также через общую точку. Выход ОУ подключён к базе транзистора.

Следует помнить, что транзистор, используемый в микросхемах данной серии, способен выдержать нагрузки до 0.1 А и 36 В.

Принцип работы

Работа микросхемы основана на принципе превышения напряжения поданного на прямой вход ОУ над опорным. При U (напряжении на прямом входе) меньше или равным Vref (опорном напряжении на выходе) будет подобное низкое напряжение, из-за чего транзистор не откроется, а ток по цепи анод-катод не будет поступать. Как только U превысит Vref на выходе ОУ, образуется напряжение, способное открыть транзистор и заставить ток протекать от катода к аноду, что заставляет микросхему работать.

Цоколёвка tl341

TL 341 представляет собой трёхвыводную микросхему. Каждая ножка имеет собственное название 1 - reference (выход), 2 - anode (анод) и 3 - catode (катод).

На практике цоколёвка бывает различной и зависит от типа корпуса выбранного производителем при изготовлении изделия. TL431 выпускается в большом количестве разных корпусов, от древних TO-92 до современных SOT-23. Распиновка tl431 в зависимости от вида корпуса изображены на рисунке 3.

Аналогами tl431 отечественного производства являются микросхемы КР142ЕН19А и К1156ЕР5Т. К зарубежным аналогам можно отнести:

  • KA431AZ;
  • KIA431;
  • HA17431VP;
  • IR9431N;
  • AME431BxxxxBZ;
  • AS431A1D;
  • LM431BCM.

Технические характеристики

Основными техническим характеристиками микросхемы tl 341 являются:

Из характеристик видно, что микросхему можно использовать при довольно обширном диапазоне напряжения, однако пропускная способность по току весьма невелика. Чтобы получить более серьёзные, к катодной цепи подключают мощные транзисторы, которые регулируют выходные параметры.

Схемы включения

Микросхема tl 431 представляет собой стабилитрон интегрального типа. Она обладает тремя схемами включения:

  • на 2.48 В (1);
  • на 3, 3 В (2);
  • на 14 В.

Вариант 1: схема на 2,48 В.

Схема включения стабилитрона на 2.48 вольта оснащена одноступенчатым преобразователем. Среднее значение рабочего тока в подобной системе составляет 5.3 А. К выводу ref (цепь опорного напряжения) монтируется цепь, состоящая из двух параллельно соединённых резисторов (по 2.4 и 2.26 кОм). На эти резисторы предварительно подаётся напряжение равное 5 В, которое после прохождения цепи превращается в 2,48.

С целью повышения чувствительности стабилитрона применяются разнообразные модуляторы, в основном, дипольного типа с ёмкостью менее 3 пФ (пикофарад). Стабилитроны подключают к катоду.

Вариант 2: схема включения на 3,3 В.

В схеме включения на 3,3 В также используется одноступенчатый преобразователь и резистор на 1 кОм, подключённый к катоду. Перед сопротивлением ставится сторонний источник питания на 3 В. К выводу (ref) подключается конденсатор ёмкостью 10 нФ, соединённый с землёй. Анод в подобной схеме сажается напрямую на землю, а катодная и входная цепи соединяются двумя общими точками.

Проблемой этой схемы включения является большая вероятность возникновения короткого замыкания (КЗ). Для того чтобы снизить риск возникновения КЗ, после стабилитронов монтируют предохранитель.

Чтобы усиливать сигнал к выводу подключают специальные фильтры. В такой схеме включения средние показатели напряжения и тока составляют 5 В/ 3.5 А, а точность стабилизации менее 3%. Стабилитрон подключается через векторный переходник поэтому нужно подбирать транзистор резонного типа Средняя ёмкость модулятора должна составлять 4.2 пФ. Для увеличения проводимости тока можно использовать триггеры.

Независимые устройства на базе микросхемы

Эту микросхему используют в блоках питания телевизоров и компьютером. Однако на её базе можно составить независимые электрические схемы некоторыми, из которых являются:

  • стабилизатор тока;
  • звуковой индикатор.

Стабилизатор тока

Стабилизатор тока - это одна из самых простых схем, которые можно реализовать на микросхеме tl 341. Он состоит из следующих элементов:

  • источника питания;
  • сопротивления R 1, подключённого с помощью общей точки к + линии питания;
  • шунтирующего сопротивления R 2 к - линии питания;
  • транзистора, чей эмиттер подключён к - линии через резистор R 2, коллектор к выходу - линии, а база через общую точку к катоду микросхемы;
  • микросхемы tl 341, чей анод подключён к - линии с помощью общей токи, а вывод ref включён в эмиттерную цепь транзистора также с помощью общей точки.

Основную роль в данной схеме выполняет шунтирующий резистор R 2, который за счёт обратной связи устанавливает значение, напряжение равное 2,5 В. Из-за этого выходной ток будет принимать следующий вид: I=2,5/R2.

Звуковой индикатор

Звуковой индикатор на базе tl 341 представляет собой простую схему, изображённую на рисунке 5

Такой звуковой индикатор можно использовать для отслеживания уровня воды в какой-либо ёмкости. Датчик представляет собой электронную схему в корпусе с двумя выводными электродами, изготовленными из нержавеющей стали, один из которых расположен на 20 мм выше другого.

В момент соприкосновения выводов датчика с водой происходит снижение сопротивления и осуществляется переход tl 341 в линейный режим через резисторы R 1и R 2. Это способствует появлению автогенирации на резонансной частоте и образованию звукового сигнала.

Проверка работоспособности с помощью мультиметра

Вопросом о том, как проверить tl431 с помощью мультиметра, задаются многие. Ответ на него достаточно прост для того, чтобы проверить микросхему tl341 или её модификации tl431a необходимо выполнить следующие действия:

  1. Собрать простую тестовую схему с использованием микросхемы и ключа.
  2. Замкнуть цепь переключателя и провести измерения. Мультиметр должен показывать значение опорного напряжения - 2,5 В.
  3. Разомкнуть цепь и провести измерения. На дисплее измерительного прибора должно быть 5 В.

Стабилизатор интегральный TL431, как правило, используется в блоках питания. Но для него еще можно подобрать немало сфер использования. Некоторые из данных схем опишем в этой статье, а также расскажем о полезных и простых устройствах, выполненных с помощью микросхемы TL431. Но в данном случае не надо пугаться термина «микросхема», у нее только три выхода, и внешне она схожа с простым маломощным транзистором TO90.

Что такое микросхема TL431?

Уж так сложилось, что все электронщики знают магические цифры TL431, аналог 494. Что это такое?

Предприятие «Texas Instrument» находилось у истоков разработки полупроводников. Они всегда были на первых местах в производстве электронных компонентов, постоянно удерживаясь в первой десятке мировых лидеров. Первая интегральная схема была разработана еще в 1958 г. работником этой фирмы Джеком Килби.

Сегодня фирма TI производит большой ассортимент микросхем, их название начинается с букв SN и TL. Это соответственно логические и аналоговые микросхемы, навсегда вошедшие в историю предприятия TI, и до сих пор имеют широкое использование.

В числе фаворитов в перечне «магических» микросхем нужно, вероятней всего, интегральный стабилизатор TL431 . В 3-х выходном корпусе данной микросхемы установлено 10 транзисторов, а функция, исполняемая ей, идентична с простым стабилитроном (диод Зеннера).

Но благодаря этому усложнению, микросхема имеет повышенную крутизну характеристик и более высокую термостабильность. Основная же ее особенность заключается в том, что с помощью наружного разделителя напряжение стабилизации можно менять ток в диапазоне 2,6…32 Вольт. У современных TL431 аналог нижнего порога имеет 1,25 Вольт.

TL431 аналог разработал инженер Барни Холандом, когда он занимался копированием схемы стабилизатора другой фирмы. В нашей бы стране сказали сдирание, а не копирование. И Холанд позаимствовал из изначальной схемы источник опорного напряжения, и уже на этой основе разработал отдельную стабилизаторную микросхему. Вначале она имела название TL430, а после определенных доработок стана называться TL431.

С той поры прошло много времени, но нет сегодня ни одного блока питания для компьютера, где бы она не была установлена. Схема также нашла применение почти во всех импульсных немощных источниках питания. Один из этих источников сегодня есть в любом доме – это зарядка для мобильных телефонов. Этому долгожительству можно лишь позавидовать.

Также Холандом была разработана не менее известная и до сегодняшнего дня востребованная схема TL494. Это двухчастотный ШИМ - контроллер , на основе которого изготовлено множество видов источников питания. Потому цифра 494 также по праву является к «магической». Но перейдем к рассмотрению разных изделий на основе TL431.

Сигнализаторы и индикаторы

Схемы TL431 аналог может использоваться не только по своему непосредственному предназначению в качестве стабилитронов в блоках питания. На основе этой микросхемы возможно создание разных звуковых сигнализаторов и индикаторов освещения. При помощи этих устройств можно проверять множество разных параметров.

Для начала, это обычное напряжение электричества . Если же какую-то физическую величину при помощи датчиков представить в качестве напряжения, то можно создать оборудование, контролирующее, к примеру:

  • влажность и температуру;
  • уровень воды в баке;
  • давление газа или жидкости;
  • освещенность.

Принцип работы этого сигнализатор основан на том, что во время напряжения на электроде управления стабилитрона DA1 (выход 1) меньше 2,6 Вольт стабилитрон закрыт, сквозь него проходит только невысокий ток, обычно не больше 0.20…0.30 мА. Но данного тока хватает для слабого свечения диода HL1. Чтобы такого явления не происходило, можно параллельно диоду подсоединить резистор сопротивлением приблизительно 1…2 КОм .

Если напряжение на электроде управления более 2,6 Вольт, то стабилитрон откроется и загорится диод HL1. Требуемое ограничение напряжения через стабилитрон DA1 и диод HL1 создает R3. Наибольший ток стабилитрона имеет 100 мА, при этом такой же параметр у диода HL1 только 22 мА. Именно из данного условия и можно вычислить сопротивление резистора R3. Более точней сопротивление рассчитывается по нижеуказанной формуле.

R3=(Uпит – Uhl - Uda) / Ihl, где:

  • Uda – ток на открытой микросхеме (как правило, 2 Вольт);
  • Uhl – непосредственное падение тока на диоде;
  • Uпит – ток питания;
  • Ihl – напряжение диода (находится в диапазоне 4…12 мА).

Также нужно помнить о том, что наибольшее напряжение для TL431 только 36 Вольт. Данный параметр нельзя превышать.

Уровень включения сигнализатора

Ток на электроде управления, когда включается диод HL1 (Uз) задается разделителем R1, R2. Характеристики разделителя определяются по формуле:

R2=2.5хR1/(Uз – 2.5)

Для максимально точной подстройки порога включения можно вместо резистора R2 поставить подстроечный, с показателем раза в 1,5 выше, нежели получилось по расчету. Затем, когда настойка сделана, его можно поменять на постоянный резистор, его сопротивление должно равняться сопротивлению установленной части подстроечного.

Как TL431 проверить схему включения? Чтобы проконтролировать несколько уровней тока будет необходимо 3 этих сигнализатора, каждый из них настраивается на определенное напряжение. Таким способом можно сделать целую линейку шкалы и индикаторов.

Для электропитания цепи индикации, которая состоит из резистора R3 и диода HL1, можно использовать отдельный даже нестабилизированный источник питания. В данном случае контролируемый ток подается на верхний по схеме выход резистора R1, который нужно отсоединить от резистора R3. При этом подключении контролируемый ток может быть в диапазоне от 3-х, до десятков вольт .

Отличие данной схемы от предыдущей заключается в том, что диод подсоединен по-другому. Это подключение называется инверсным, так как диод включается в лишь случае, если схема закрыта. В случае, когда контролируемый ток превышает порог заданный разделителем R1, R2 схема открыта, и ток проходит через резистор R3 и выходы 3 – 2 микросхемы.

На схеме в данном случае происходит падение напряжения до 2 Вольт, которого не хватает для включения светодиода. Чтобы диод гарантированно не включился, последовательно с ним устанавливают два диода.

Если контролируемый ток будет меньше заданного разделителем R1, R2 схема закроется, ток на ее выводе будет значительно больше 2 Вольт, потому диод HL1 включится .

Если нужно проконтролировать лишь изменение тока, то индикатор можно сделать по схеме.

В данном индикаторе использован 2-хцветный диод HL1. Если контролируемый ток превышает заданное значение, включается красный диод, а если ток ниже, то зеленый. В случае если напряжение расположено вблизи этого порога, погашены оба светодиода, потому что передаточное положение стабилитрона имеет некоторую крутизну.

Если нужно отследить изменение какой-то физической величины, то R2 заменяют датчиком, который изменяет сопротивление под воздействием окружающей среды.

Условно на схеме находится одновременно несколько датчиков. Если это фототранзистор, то будет фотореле. Пока света достаточно, фототранзистор открыт, и сопротивление у него небольшое. Потому ток на управляющем выходе DA1 ниже порогового , в результате этого диод не светит.

По мере уменьшения света сопротивление фототранзистора повышается, это приводит к увеличению напряжения на управляющем выходе DA1. Если данное напряжение будет больше порогового (2,5 Вольт), то стабилитрон открывается и загорается диод.

Если подключить терморезистор, вместо фототранзистора, к входу микросхемы, к примеру, серии ММТ, то выйдет индикатор температуры: при уменьшении температуры диод будет включаться.

Порог срабатывания в любом случае задается при помощи резистора R1.

Помимо описанных световых индикаторов, на базе TL431 аналога можно сделать и звуковой индикатор. Для контроля воды, к примеру, в ванне, к схеме подсоединяется датчик из двух пластин нержавейки, которые находятся на расстоянии пары миллиметров между собой.

Если вода дойдет до датчика, то его сопротивление снижается, а микросхема с помощью R1, R2 войдет в линейный режим. Так, возникает автогенерация на резонансной частоте НА1 , в этом случае произойдет звуковой сигнал.

Подводя итог, хотелось бы сказать, что все-таки основная сфера использования микросхемы TL434, естественно же, блоки питания. Но, как можно убедиться, возможности микросхемы только этой функцией абсолютно не ограничены, и можно собрать множество устройств.

Выпуск интегральной микросхемы начался с далекого 1978 года и продолжается по сегодняшний день. Микросхема дает возможность изготовить различные виды сигнализации и зарядные устройства для повседневного применения. Микросхема tl431 нашла широкое применение в бытовых приборах: мониторах, магнитофонах, планшетах. TL431 - это своего рода программируемый стабилизатор напряжения.

Схема включения и принцип работы

Принцип работы довольно прост. В стабилизаторе есть постоянная величина опорного напряжения , и если подаваемое напряжение меньше этого номинала, то транзистор будет закрыт и не допустит прохождение тока. Это отчетливо можно наблюдать на следующей схеме.

Если же эту величину превысить, регулируемый стабилитрон откроет P-N переход транзистора, и ток потечет дальше к диоду, от плюса к минусу. Выходное напряжение будет постоянным. Соответственно, если ток упадет ниже величины опорного напряжения, управляемый операционный усилитель закроется.

Цоколевка и технические параметры

Операционный усилитель выпускается в разных корпусах. Изначально это был корпус ТО-92, но со временем его сменил более новый вариант SOT-23. Ниже изображена распиновка и виды корпусов начиная с самого «древнего» и заканчивая обновлённой версией.

На рисунке можно наблюдать, что у tl431 цоколевка изменяется в зависимости от типа корпуса. У tl431 имеются отечественные аналоги КР142ЕН19А, КР142ЕН19А. Существуют и зарубежные аналоги tl431: KA431AZ, KIA431, LM431BCM, AS431, 3s1265r, которые ничем не уступают отечественному варианту.

Характеристика TL431

Этот операционный усилитель работает с напряжением от 2,5 до 36В. Ток работы усилителя колеблется от 1А до 100 мА, но есть один важный нюанс: если требуется стабильность в работе стабилизатора, то сила тока не должна опускаться ниже 5 мА на входе. У тл431 имеется величина опорного напряжения, которая определяется по 6-й букве в маркировке:

  • Если буквы нет, то точность равняется - 2%.
  • Буква А в маркировке свидетельствует о - 1% точности.
  • Буква В говорит о - 0,5% точности.

Более развернутая техническая характеристика изображена на рис.4

В описании tl431A можно увидеть, что величина тока довольна мала и составляет заявленные 100мА, а величина мощности, которую рассеивают эти корпуса, не превышает сотен милливатт. Этого мало. Если предстоит работать с более серьезными токами, то будет правильнее воспользоваться мощными транзисторами с улучшенными параметрами.

Проверка стабилизатора

Сразу возникает уместный вопрос о том, как проверить tl431 мультиметром . Как показывает практика, одним мультиметром проверить не получится. Для проверки tl431 мультиметром следует собрать схему. Для этого понадобятся: три резистора (один из них подстроечный), светодиод или лампочка, источник постоянного тока 5В.

Резистор R3 необходимо подобрать таким образом, чтобы он ограничил ток до 20мА в цепи питания. Его номинал составляет примерно 100Ом. Резисторы R2 и R3 выполняют роль балансира. Как только напряжение будет 2,5 В на управляющем электроде, то переход светодиода откроется, и напряжение пойдет через него. Эта схема хороша тем, что светодиод выполняет роль индикатора.

Источник постоянного тока - 5В является фиксированным, а управлять микросхемой tl431 можно с помощью переменного резистора R2. Когда питание на микросхему не подается, то диод не горит. После того как сопротивление изменяется при помощи подстроечного резистора, светодиод загорается. После этого мультиметр нужно включить в режим измерения постоянного тока и замерить напряжение на управляющем выводе, которое должно составлять 2,5. Если напряжение присутствует и светодиод горит, то элемент можно считать рабочим.

На базе операционного усилителя тока tl431 можно создать простой стабилизатор. Для создания нужной величины U этого понадобятся три резистора. Необходимо высчитать номинал запрограммированного напряжения стабилизатора. Расчет можно произвести при помощи формулы: Uвых=Vref(1 + R1/R2). Согласно формуле U на выходе зависит от величины R1 и R2. Чем больше сопротивление R1 и R2, тем ниже напряжение выходного каскада. Получив номинал R2, величину R1 можно высчитать следующим образом: R1=R2(Uвых/Vref – 1). Регулируемый стабилизатор возможно включить тремя способами.

Необходимо учесть немаловажный нюанс: сопротивление R3 можно рассчитать по той формуле, по которой рассчитывался номинал R2 и R2. В выходной каскад не стоит устанавливать полярный или неполярный электролит, во избежание помех на выходе.

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения - следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

Необходимо обратить особое внимание на транзистор az431 . Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице.

Именно этот транзистор плавно уменьшает напряжение и силу тока. Вольт-амперные характеристики этого элемента хорошо подходят для решения поставленной задачи.

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.

Loading...Loading...